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We present experimental measurements of the mean energy for the atom-optics kicked rotor after just two
kicks. The energy is found to deviate from the quasilinear value for small kicking periods. The observed
deviation is explained by recent theoretical results which include the effect of a nonuniform initial momentum
distribution, previously applied only to systems using much colder atoms than ours.
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For some time now, studies of cold atoms subject to a
periodically pulsed one-dimensionals1Dd optical lattice fa
system referred to as the atom-optics kicked rotorsAOKRdg
have provided a great deal of insight into quantum systems
with chaotic classical analogsf1–4g. Typically, such experi-
ments have focused on the “late-time” behavior of the quan-
tum kicked rotor. This is partially because the hallmark of
quantum interference effects in the AOKR—dynamical
localization—is only observed after at least five or ten kicks
for typical experimental parametersssee, for example, Ref.
f5gd. Observations of quantum resonances in the mean en-
ergy have also generally been made in the late-time regime
f4,6g. Somewhat less attention has been given, however, to
the “early-time” regime, where theoretical predictions had
suggested that only quasilinear energy growth took place, in
particular, during the first two kicks. That is, no classical or
quantum correlations are found to be important during this
time, given broad initial distributions for position and mo-
mentum.

However, recent theoretical and experimental work dem-
onstrates that nontrivial behavior may be observed in the
mean energy of the AOKR as a function of kicking period
after as few as two kicks if the atomic sample initially has a
narrow momentum distributionf7g. Experimental work has
focused on the temporal half-Talbot effect which leads to
recurrence of the initial momentum distribution after two
kicks f8,9g and more detailed studies of the energy depen-
dence as the kicking period is varied have also been per-
formed f9g. To observe the effects of interest, both of these
previous experimental studies made use of Bose-Einstein
condensates which provide atomic samples with much nar-
rower initial momentum distributions than those used in typi-
cal AOKR experiments. For atomic ensembles with larger
thermal energies, the classical theory of Rechester and White
f10g and the quantum theory of Shepelyanskyf11g both pre-
dict the same constant quasilinear energy growth rate for the
first two kicks for any kicking period. In this paper, we dem-
onstrate that deviations from quasilinear behavior can occur
in the second kick even for relatively broad initial momen-
tum distributions. The anomalous energy growth rates are
found only at very small values of the kicking period which
have not previously been probed experimentally.

For large detunings between the kicking laser and the
atomic transition, the scaled Hamiltonian for an atom which
experiences ideald kicks with periodT is

Ĥ =
r̂2

2
− k cossf̂do

n=0

N

dst − nd, s1d

where r̂ is the scaled atomic momentum operator,f̂ is the
scaled position operator for an atom,t= t /T is the scaled
time, andk is the kicking strength. We note the commutator

relation ff̂ , r̂g= ik–, where k–=8vrT, and "vr is the energy
change of a cesium atom after the scattering of a single pho-
ton of wavelength 2p /kl =852 nm has occurred. The atomic
momentum p is related to the scaled momentumr by

p/2"kl =r / k–, and we refer to the quantityp/2"kl as the mo-
mentum in two-photon recoils, or the momentum in experi-
mental units. The atomic position operatorx̂ is given by x̂
=f̂ /2kl.

It is useful to consider the standard map for thed-kicked
rotor sDKRd. If we label the atomic position and momentum
just before thenth kick asfn−1 andrn−1, respectively, inte-
grating Hamilton’s equations over one kick gives the recur-
sive relation

fn = fn−1 + rn, rn = rn−1 − k sinsfn−1d. s2d

This map holds for the classical position and momentum for
the DKR and also for the associated position and momentum
operators for the quantum DKR. In this paper, we are inter-
ested in the mean energy of the atoms after they have expe-
rienced two kicks. From Eq.s2d the atomic momentum after
two kicks is

r2 = r0 − k sinsf0d − k sinsf1d. s3d

Experimentally, we measure the quantityE2=kr2
2/2k–2l, that

is, the mean kinetic energy of the atomic ensemblesin ex-
perimental unitsd. Theoretically, this requires the determina-
tion of correlation functions of the formksinsf0dsinsfidl.
These correlations were first calculated for the classical DKR
by Rechester and Whitef10g and later for the quantum DKR
by Shepelyanskyf11g under the assumption that the atomic
position and momentum were initially uniformly distributed.
In this case, the cross terms in the expression forkr2

2l are
found to vanish when averaged over the ensemble and we are
left only with contributions from the squares of the three
terms in Eq.s3d. The last two terms give equal contributions
of k2/4 each, so the energy after two kicks is
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E2,broad= ssr
2 + k2d/2k–2, s4d

wheresr is the scaled standard deviation of the initial mo-
mentum distribution. Although this expression is explicitly

dependent onk–, in a given experimental run, the quantities

sr / k– andk / k– are held constantfcorresponding to a constant
magneto-optical trapsMOTd temperature and constant laser
power, respectivelyg. In this case, we see that the energy after

two kicks remains constant ask– is varied and that, ignoring

the thermal energysr
2/2k–2, it is simply given by twice the

quasilinear growth ratek2/4k–2.
The assumption of a broad initial momentum distribution

is not justified if the initial momentum distribution is com-
parable in width to 2"kl sas is the case for a Bose-Einstein

condensated, or if k– is close to zero, sincesr=k–sp swheresp
is the standard deviation in experimental unitsd. In this paper
we consider the latter case and the effect it has on the energy
after two kicks. In Ref.f7g an expression was derived for the
energy after the second kick for atoms with a Gaussian initial
momentum distribution of arbitrary widthsr. In this case the
cross terms in the expression forkr2

2l do not vanish and the
energy after two kicks for the quantum DKR is found to be

E2 =
1

2k–2
Ssr

2 +
k2

2
+

k2

2
f1 − J2sk2qde−2sr

2g − 2kJ1skqdsr
2e−sr

2/2

+ k2fJ0skqd − J2skqdgcossk–/2de−sr
2/2D , s5d

wherekq=2k sinsk–/2d / k– andk2q=2k sinsk–d / k–. The width of
the initial momentum distribution becomes narrower in

scaled units ask– is decreased, leading to deviations from the

quasilinear result fork–&1. This effect can be seen in Fig. 1
for two different values ofsp. The energy now varies as a

function of k– and exhibits a pronounced minimum, the posi-

tion of which depends on the value ofk / k–. From this mini-

mum, the energy then increases monotonically ask–→0 to

the valuesk / k–d2+sp
2/2 in two-photon recoil energies. Ifsr is

small and any of the quantum correction factors:

2 sinsk–/2d / k–,sinsk–d / k–, or cossk–/2d, are different from unity,
quantum interference effects may become important, particu-
larly if k is large. However, for the parameters investigated
in this paper, quantum corrections were negligible. At larger

values ofk / k– swhich were not attainable experimentallyd a
clear difference between quantum and classical energies is
predicted by the analytical expression in the vicinity of the
energy minimum. Future experiments utilizing higher laser
powers should be able to resolve this difference experimen-
tally.

Physically, we can ascribe the importance of the exact

momentum variance of the atoms for lowk– to the short time
between pulses in this regime. Essentially, the spread in
atomic momentum is not resolved if the time between the

first and second kicks is small. For very smallk–, the system’s
behavior is similar to the case where the atomic sample starts

in an initial momentum eigenstate. We may estimate the

value ofk– below which we expect deviations from quasilin-
ear behavior using the followingsclassicald argument: After
one kick, the atoms have a momentum variancestot

2 =sp
2

+s1
2, wheres1, the momentum variance due to the first kick,

is s1
2=2sk / k–d2s"kld2 sassuming a broad initial position distri-

butiond. The shortest timeTcrit between pulses for which at-
oms with momentumupu=stot still traverse a full cycle of the
standing wave between kicks is given by

Tcrit = lMCs/2stot. s6d

For pulsing periodsT,Tcrit sand, thus,k–,8vrTcrit=k–critd,
most atoms traverse a distance less thanl /2 and deviations
from the quasilinear result should be expected. For the two

sets of parameters considered in Fig. 1,k–crit=1.0 and 0.78, in
good agreement with the behavior exhibited by numerical
and analytical results.

The crosses and circles in Fig. 1 show simulation results
for a rectangular-pulse-kicked rotor, in which the pulse width
tp was kept constant as the kicking period was decreased, as
in experiments. We see that even though thed-kicked ap-

proximation is flagrantly violated for lowk– swhere the pulse
may be on for up to half the kicking periodd, the simulation
results show excellent agreement with thed-kicked theory.
This agreement may be attributed to the fact that the atomic
momenta are still sufficiently small after two kicks, that at-
oms will not tend to traverse a significant distance along the
optical standing wave during the time the pulse is on. Spe-
cifically, for the highest energies measured in this work, at-
oms typically travel a distance of only 8% of the standing
wave’s period. This means that averaging of the kicking

FIG. 1. Energy after two kicks as a function ofk– as given by Eq.

s5d. The solid line is fork / k–=7 andsp=1.8 two-photon recoils.

The dashed line is fork / k–=7 and sp=3.2 two-photon recoils.
Simulation results for the same parametersscrosses and circles,
respectivelyd, but for kicking with rectangular pulses of constant
width tp, are overlayed. The ratiotp/T varied from about 0.015 for

k–<3 to 0.5 fork–<0.1. The vertical lines show the value ofk–crit as
determined from Eq.s6d. The dot-dashed line is forsp=1.8 and the
dotted line is forsp=3.2.
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strength over the pulse duration, which can restrict energy
growth after many pulses, may be neglected in this work.
Hence, we compare our experimental results with Eq.s5d in
the remainder of this report.

Our experimental set up has been detailed in other publi-
cationsf6,12g. Cesium atoms are typically cooled to below
10 µK for our experiments in a standard MOTf13g. The
atoms are then released from the trap and kicked twice by
pulses from an optical standing wave detuned 500 MHz from
the 6S1/2 sF=4d→6P3/2 sF8=5d transition of cesium. The
largest optical power used in our experiments was 29 mW.
For this power, the spontaneous emission probability was
estimated to be,1.5% per kick. Since only two kicks occur
in these experiments, this rate of spontaneous emission leads
to negligible heating and its effect may be neglected. The
pulse widthtp remained constant at 480 ns for all experi-
mental runs. After a 12-ms expansion time, the atoms were
effectively frozen in space by optical molasses and their re-
sultant fluorescence captured by a charged-coupled device
sCCDd camera giving the position distribution of the atoms
after kicking. Knowing the time of flight of the atoms, we
were then able to calculate their momentum distribution and
numerically find its second moment, and, thus, the energy of
the atomic ensemble.

Figure 2 shows experimental results after one and two

kicks. For the results shown in this figure,k / k– was measured

by finding the mean of the energies whenk–ù1 for both one
and two kicks. The difference between these two values is

given by the quasilinear energy growth rates1/4dsk / k–d2. Us-
ing this parameter, and subtracting the thermal energy from
both sets of results, we find good agreement between the
analytical formula of Eq.s5d and the results obtained experi-
mentally. Since the mean energy after one kick is expected to
always be the trivial quasilinear result, the remainder of our
results focus on the energy after two kicks. In this case, we

measuresp using a time-of-flight method and once again

find the mean energy for the results wherek–ù1. We may

then calculatek / k– using Eq.s4d. In Fig. 3, the mean energy

as a function ofk– is shown for various values of the param-

eterk / k– corresponding to different laser powers used in our

experiment. We notice in particular that the position ink– of
the energy minimum and the point where deviation from the
quasilinear result first occurs shift to the right as the value of

k / k– is decreased. Additionally, ask–→0, the energy due to

kicking tends tosk / k–d2, which corresponds to ballistic en-

ergy growth with coefficients1/4dsk / k–d2. Ballistic energy
growth is usually associated with quantum resonance and,

indeed, thek–→0 limit may be seen as a special case of
quantum resonance. In fact, thee-classical picture developed
for the usual quantum resonances of the kicked rotorf14g
should also be applicable in the regime neark–=0.

We have also investigated the effect of increasingsp on
the deviation from quasilinear behavior. We would expect
that assp gets larger, the deviation from the quasilinear en-
ergy in the second kick would become less prominent. To
test this experimentally, we reduced the cooling efficiency of
our MOT to create atomic samples with various momentum
spreads of up to 6.0 two-photon recoils. These samples were

then kicked for the same value ofk / k–. As shown in Fig. 4
the deviations do indeed become less pronounced as the ini-
tial momentum spread is increased. However, modern kicked
rotor experiments typically achieve initial momentum distri-
butions much narrower than 6 two-photon recoils, so experi-

ments studying the early-time behavior for smallk– clearly
need to take finite-sp effects into account.

The structure seen in our results occurs fork–&1, where it
seems reasonable to expect that the classical kicked rotor
theory is of considerable relevance. In Fig. 5, the classical

FIG. 2. Experimentally measured energies after one and two

kicks scircles and crosses, respectivelyd. The value ofk / k– was
found to be 5.2±0.4 andsp was measured to be 4.2 two-photon
recoils. The solid lines give the theoretical values for the energy
after one and two kicks, respectively. The initial thermal energy has
been subtracted to allow a more instructive comparison between the
energies.

FIG. 3. Experimentally measured energies after two kicks for

various values ofk / k– andsp=3.35±0.06. The measured values of

k / k– were sad 7.5, sbd 6.4, scd 5.6, andsdd 4.5 each with an experi-
mental error of ±0.1. The solid line through the data shows the
energy given by Eq.s5d The dotted and dashed lines show the
energy given by the quasilinear theory after one and two kicks,
respectively.
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phase-space distribution is shown for kicking periods corre-
sponding tok–=0.001, 0.3, and 3.0 and values ofk such that
k / k–=5.5. The trend in the momentum spreadsand thus en-
ergyd as k– increases is apparent and does indeed appear to
match that found in our measurements, in particular, the dip
in energy seen neark–=0.3. One factor governing this behav-
ior is the transition from regular motion to chaos ask is
increased in the kicked rotor system. The onset of global
chaos occurs fork,1 f15g, corresponding tok–=0.18 for the
parameters used in Fig. 5. Thus the energy minimum would
seem to correspond roughly to the transition to chaos where
resonant motion has been destroyed but diffusive energy
growth is still inhibited by Komolgorov-Arnold-Moser
boundaries. We note that the phase-space diagram was ob-
tained using 100 iterations of the standard map in order to
emphasize the structure present. However, the qualitative be-
havior of the system is seen to be the same as that after just
two kicks.

In conclusion, we have presented experimental results for
the atom-optics kicked rotor at very early times and ask–

→0. Although thed-kicked approximation is no longer a
good one for experiments in this regime, we nonetheless find
excellent agreement between our measurements and recent
analytical predictions. These results deviate significantly
from the quasilinear energy growth in the first two kicks
predicted by theories which assume a broad initial momen-
tum distribution. The considerations raised in this paper will
be important for any future studies of the atom-optics kicked
rotor in the regime of smallk– ssee, for example, Ref.f16gd.
Additionally, the further study of this system for smallk– is of
interest as it relates to quantum resonance behavior in the
kicked rotor.
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FIG. 4. Experimentally measured energies after two kicks for
various values ofsp. The measured values ofsp were sad 3.3, sbd
4.2, scd 5.3, andsdd 6.0 in two-photon recoils. We estimate the error
in these measurements to be on the order of 0.9 two-photon recoil.

For these curves, the measured value ofk / k– is 5.8±0.2. The solid
lines show the analytical results and the dashed lines show the
energy predicted by the quasilinear theory.

FIG. 5. Phase-space diagrams forT corresponding tok–

=stopd 0.001, smiddled 0.3, andsbottomd 3.0 andk such thatk / k–

=5.5. The plots were generated from 100 iterations of the map in
Eq. s2d using a uniform initial distribution in thef coordinate and a
Gaussian initial distribution inp smomentum in experimental unitsd
with sp=3.6.
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